IGC	Learning Outcomes	
1.4	Recognize the steps of the scientific method.	
1.1	Classify matter.	
1.1	Identify and describe the three states of matter.	
1.1	Distinguish between substances and mixtures.	
1.1	Identify substances as elements or compounds.	
1.1	Identify mixtures as homogeneous or heterogeneous.	
1.2	Identify and provide examples of properties of matter.	
1.2	Distinguish between physical and chemical changes.	
1.2	Identify properties as physical or chemical.	
1.2	Give examples of physical and chemical changes and chemical and physical properties.	
1.2	Distinguish between intensive and extensive properties.	
1.2	Produce examples of intensive and extensive properties.	
1.5	Demonstrate knowledge of units, their abbreviations, and relationships among them.	
1.5	Identify the SI base units, including the symbol, and the quantity they are used to measure.	
1.5	Recognize metric prefixes, their symbol, and their meaning.	
1.5	Write relationships between quantities with different metric prefixes	
1.5	Recall the difference between mass and weight	
0.2	Determine when and how to use numbers in scientific notation.	
0.2	Convert numbers between standard and scientific notations.	
0.2	Use numbers in scientific notation in calculations.	
1.5	Describe and use derived units.	
1.5	Identify the SI-derived unit for volume.	
1.5	Give examples of common units of volume.	
1.8	Define density.	
1.8	Calculate density from given values of mass and volume.	
1.9	Convert temperatures between Celsius and Kelvin.	
1.9	Identify the common scales used for temperature.	
1.9	Relate how the temperature scales compare to each other.	
1.6	Apply rules of significant figures.	
1.6	Summarize the importance of significant figures.	
1.6	Label numbers in a quantity as significant or not.	
1.6	Define exact number.	
1.6	Classify numbers as exact or not.	
1.6	State the rule for determining signifcant figures in addition and subtraction.	
1.6	Complete calculations with addition and subtracting using the rules for significant figures.	
1.6	State the rule for determining signifcant figures in multiplication and division.	
1.6	Complete calculations with multiplication and division using the rules for significant figures	
1.6	Complete calculations that involve both addition/subtraction and multiplication/division.	
1.6	Distinguish between precision and accuracy.	
1.6	Define precision and accuracy.	
1.6	Analyze data to label as precise, accurate, neither, or both.	
1.7	Solve problems using dimensional analysis.	
1.7	Build a problem solving plan by analyzing what is given in a chemical problem and construc path to obtain an answer.	
1.7	Apply dimensional analysis methods to convert between units in a one step process.	
1.7	Apply dimensional analysis in a multi step conversions.	
1.7	Apply dimensional analysis involving units raised to a power.	

IGC	Learning Outcomes		
2.2-2.3	Explain atomic theory and how the structure of the atom was determined.		
2.2	State the law of definite proportions.		
2.3	Describe the statements of Dalton's Atomic Theory.		
2.3	Explain which statements of Dalton's theory are no longer accurate and why.		
2.2	State the law of conservation of mass.		
2.2	Perform simple problems using the law of conservation of mass.		
2.3	Explain how the cathode ray tube lead to the understanding of electrons.		
2.3	Describe the mass to charge ratio of the electron.		
2.3	Explain the measurement of the electron's charge using the Millikan's Oil Drop Experiment		
2.3	Describe Rutherford's gold foil experiment.		
2.3	Interpret the Rutherford's gold foil experiment results that lead to the conclusion that the		
2.3	nucleus exists as a small dense core. Explain how the mass deficit lead to the proposal that neutrons exist.		
2.3	Describe the structure of an atom and its components.		
2.4	Define the atomic mass unit in terms of the mass of a carbon atom.		
2.4	Compare the relative mass and charge of the subatomic particles.		
2.4	Define atomic number.		
2.4	Describe the relationship between the atomic number and the number of protons.		
2.4	Determine the atomic number for an element using the periodic table.		
2.4	Compare properties of isotopes.		
2.4	Define isotope.		
2.4	Define mass number.		
2.4	Symbolize isotopes using chemical symbols, mass number, and atomic number.		
2.4	Determine the number of protons, neutrons, and electrons in an atom given the isotopic symbol.		
2.4	Construct the isotope symbol for atoms.		
2.5	Use isotopic masses and natural abundance in calculations.		
2.5	Define natural abundance.		
2.5	Locate the average atomic mass of an element on the periodic table.		
2.5	Calculate the average atomic mass of an element given abundance and isotope masses.		
2.5	Calculate the relative abundance of isotopes of an element.		
2.5	Recognize the difference among the terms "atomic number", "mass number", and "atom mass".		
2.4	Describe characteristics of cations and anions.		
2.4	Define cation and anion.		
2.4	Determine the number of protons and electrons in an ion.		
2.4	Determine the charge of an ion given the number of protons and electrons.		
2.4	Construct the isotope symbol for ions.		
3.1			
	Express chemical compounds using empirical, molecular and structural formulas.		
3.1	Differentiate between atomic and molecular elements.		
2.6 2.1	Describe features of the periodic table based on its layout.		
	Memorize the names and symbols of elements indicated on "Concepts to Memorize" she		
2.6	Recall that periods are horizontal rows in the periodic table.		
2.6	Recall that groups are vertical columns in the periodic table.		
2.6	Use the periodic table to classify elements as main-group elements or transition element		
2.6	Locate noble gases, alkali metals, alkaline earth metals and halogens on the periodic table		
2.6	Use the periodic table to classify elements as metal, nonmetal, metalloid, transition meta lanthanide or actinide.		
	lianthanide or actinide		

IGC	Learning Outcomes
3.1	Recall that ionic bonds generally occur between metals and nonmetal.
3.1	Recall that covalent bonds general occur between nonmetals.
3.3	Identify characteristics of monatomic and polyatomic ions.
3.3	Use the periodic table to predict the common charge of main group elements.
3.3	Memorize polyatomic ions and charges.
3.3	Recall the formula of the hydronium ion (H3O+, also shown as H+).
3.3, 3.4	Write formulas and names for compounds.
3.3	Construct chemical formulas for ionic compounds from the known charges of the ions.
3.3	Construct chemical formulas for ionic compounds from the name of the compound.
3.4	Name ionic compounds from the chemical formula.
3.2	Name covalent compounds from the chemical formula.
3.2	Construct a chemical formula of covalent compounds given the name.
3.5	Name binary acids and provide formula from the name.
3.5	Distinguish between binary acids and oxyacids (also called oxoacids).
3.7	
	Explain the meaning of mole and its relationship to mass of an atom.
3.7	Define mole.
3.7	Recall the magnitude of a mole is equal to Avogadro's number.
3.7	Convert between the moles and atoms of an element.
3.8	Convert between grams and moles of an element.
3.8	Calculate formula and molar masses and relate to moles.
3.1	Recognize that formula units are the simplest unit for an ionic compound.
3.8	Use atomic masses of elements in a compound to calculate the formula mass (amu) and
	molar mass (g/mol) of the compound.
3.8	Convert between moles and mass of a compound.
3.8	Convert between moles and the number of molecules or formula units of a compound.
3.9	Use percent by mass of a compound in calculations.
3.9	Calculate the percent by mass of an element in a compound.
3.9	Use percent by mass as a conversion factor to calculate mass of an element in a given
	quantity of a compound.
3.9	Use subscripts in a chemical formula as a conversion factor between molecules or formula
	units and atoms or ions.
3.10	Analyze the percent by mass of a compound and determine the empirical formula.
3.11	Determine the molecular formula if given an empirical formula and its molar mass.
4.3, 5.5	Describe solutions qualitatively and quantitatively.
4.3	Define terms associated with aqueous solutions. (Solvent, solute, concentration, concentrated, dilute)
5.5	Define molarity.
5.5	Calculate molarity of a solution given moles or mass of solute and volume of solution.
5.5	Use molarity in calculations to find moles of solute, volume of solution, or mass of solute.
5.5	Use the dilution formula in calculations.
5.5	State the dilution formula and identify all variables.
5.5	Use dilution formula to calculate unknown values when a solution is diluted.
5.5	Distinguish between dilute and concentrated solutions.
4.1	Write and balance a chemical equation.
4.4	Classify an ionic compound as soluble or insoluble using the solubility rules.
4.4	Summarize the difference between soluble and insoluble compounds.
4.4	Memorize the solublity rules.
4.3	Summarize characteristics of strong, weak, and non-electrolytes.
	וסאווווואוובכ נוואואנוכווסגובס טו סגוטווק, שכאל, מווע ווטוו־כוכננו טוענכס.

IGC	Learning Outcomes	
4.3		Distinguish between strong electrolyte, weak electrolytes and nonelectrolyte solutions on th
		macroscopic level, that is how they behave.
4.3		Distinguish among strong electrolyte, weak electrolyte, and nonelectrolyte solutions on the
4.3		molecular level, that is, what makes them. Identify substances as strong, weak, or non-electrolytes.
4.4	Describe provinitatio	
	Describe precipitatio	
4.4		Define precipitation.
4.4		Predict the precipitate that may form when aqueous solutions of ionic compounds are mixed
4.4		Write complete ionic equations.
4.4		Write net ionic equations.
4.3	Identify strong acids	and bases.
4.3		List the names and formulas of the six strong acids.
4.3		Write the reactions for the ionization of a strong acid or base in water.
4.3		Recognize that hydroxides of Group I metals, calcium, strontium, and barium are strong
		bases.
4.5	Describe acid-base re	
4.3		Describe Arrhenius acids and bases.
4.5		Identify the products of reactions between acids and bases.
4.5		Write balanced neutralization reactions.
5.9		Define the common terms associated with a titration: titrant, equivalence point, indicator.
4.6	Explain properties of	oxidation-reduction reactions.
4.6		State rules for calculation of oxidation numbers.
4.6		Apply the rules to calculate the oxidation number of all atoms in a compound, for free
		elements, and for ions.
4.6		Recognize a redox reaction.
4.6		Define oxidation and reduction in terms of the loss or gain of electrons.
4.6		Identify what substance is oxidized and what substance is reduced.
4.6		Identify the oxidizing agent and reducing agent.
4.6		Balance redox reactions given the number of electrons in each half-reaction.
5.1-5.5	Calculate the quantit	tative relationships among substances in a reaction.
5.1		Determine mole-to-mole ratios between substances based on a balanced chemical equation
5.2		Given the amount of one substance (in moles or mass) and a chemical equation, calculate the
		amount of another substance (in moles or mass)
5.3		Identify limiting reagent problems.
5.3		Determine substances that are the limiting and excess reagents.
5.4		Calculate theoretical yield.
5.3		Calculate the amount of remaining excess reactant.
5.4		Distinguish between actual and theoretical yields.
5.4		Calculate percent yield
5.4		Use percent yield to calculate actual or theoretical yields.
5.5		Use molarity to solve stoichiometry and limiting reagent problems.
5.5		Recognize that the dilution formula is used for dilutions only and NOT for stoichiometry
		problems.
5.5		Distinguish between a dilution and a reaction.
5.5		Calculate quantities of reactants in a titration.
6.1-6.2	Define terms associa	ted with the energy of a reaction.
6.2		Distinguish between energy and work.
6.1		Define kinetic energy, potential energy, and thermal energy.
6.2		State the law of conservation of energy.
6.2		Define heat and work.

IGC	Learning Outcomes
6.1	Distinguish among kinetic, thermal, potential, and chemical energies.
6.1	Convert between energy units.
6.3-6.4	Describe the basic principles of thermodynamics.
6.4	Explain connections between change in internal energy and change in enthalpy.
6.3	Define state functions.
6.2, 6.4	Calcuate the change in internal energy.
6.2	Define internal energy.
6.2	Recall the sign convention of heat.
0.2	Recall the sign convention of heat.
6.2	Recall the sign convention of work.
6.2	Explain how the sign of ΔU (internal energy) indicates the flow of energy.
6.4	Calculate work.
6.4	State the equation for the relationship between pressure, volume, and work and identify
0.1	variables.
6.4	Determine PV work.
6.5	Distinguish between specific heat and heat capacity.
6.5	Define specific heat and heat capacity.
6.5	State the equation relating heat, mass, specific heat, and temperature and identify all
0.5	variables.
6.5	Use the equation relating heat, mass, specific heat, and temperature in calculations.
6.5	State the equation relating heat, heat capacity, and temperature and identify all variables
6.5	Use the equation relating heat, heat capacity, and temperature and define all variables.
6.6	Use the principles of calorimetry to measure heat transfer between objects.
6.6	Recall how thermal energy is transfered between the system and surrounding.
6.6	Complete calculations for the transfer of heat between two substances.
6.6	Define calorimetry.
6.6	Recognize the components of a constant pressure calorimeter.
6.4	Distinguish between properties of endothermic and exothermic processes.
6.4	Define enthalpy.
6.4	Define endothermic and exothermic.
6.7	Sketch energy diagram for endothermic and exothermic processes.
6.4	Explain the sign convention used for endothermic and exothermic processes.
6.7, 6.8	Use enthalpy in calculations.
6.7	Use thermochemical equations to convert between quantity of a substance and heat.
6.7	Use measured values from a constant pressure calorimeter to calculate unknown values
6.7	as enthalpy change or heat capacity. Describe the relationships between the chemical equation and ΔH of the reaction as the
6.7	reaction is modified. Explain the concept of Hess's Law.
6.7	Use Hess's Laws to determine the enthalpy change of a reaction.
6.8	Define standard state for gas, liquid, solid, or solution.
6.8	Define enthalpy of formation.
6.8	Express the reaction represented by a given enthalpy of formation.
6.8	Use values of enthalpy of formation to determine the enthalpy change for a given reaction
6.8	Determine the enthalpy of formation for a substance given the enthalpy change of a reac