IGC	Learning Outcomes	
1.4	Recognize the steps of the scientific method.	
1.1	Classify matter.	
1.1		Identify and describe the three states of matter.
1.1		Distinguish between substances and mixtures.
1.1		Identify substances as elements or compounds.
1.1		Identify mixtures as homogeneous or heterogeneous.
1.2	Identify and provide 6	examples of properties of matter.
1.2	, ,	Distinguish between physical and chemical changes.
1.2		Identify properties as physical or chemical.
1.2		Give examples of physical and chemical changes and chemical and physical properties.
1.2		Distinguish between intensive and extensive properties.
1.2		Produce examples of intensive and extensive properties.
1.5	Demonstrate knowled	dge of units, their abbreviations, and relationships among them.
1.5		Identify the SI base units, including the symbol, and the quantity they are used to measure.
1.5		Recognize metric prefixes, their symbol, and their meaning.
1.5		Write relationships between quantities with different metric prefixes
1.5		Recall the difference between mass and weight
0.2	Determine when and	how to use numbers in scientific notation.
0.2		Convert numbers between standard and scientific notations.
0.2		Use numbers in scientific notation in calculations.
0.2		ose nambers in scientific notation in calculations.
1.5	Describe and use deri	
1.5	Describe and use derived units. Identify the SI-derived unit for volume.	
1.5		Give examples of common units of volume.
		<u> </u>
1.8		Define density.
1.8		Calculate density from given values of mass and volume.
1.9	Convert temperatures	s between Celsius and Kelvin.
1.9		Identify the common scales used for temperature.
1.9		Relate how the temperature scales compare to each other.
1.6	Apply rules of signification	
1.6		Summarize the importance of significant figures.
1.6		Label numbers in a quantity as significant or not.
1.6		Define exact number.
1.6		Classify numbers as exact or not.
1.6		State the rule for determining signifcant figures in addition and subtraction.
1.6		Complete calculations with addition and subtracting using the rules for significant figures.
1.6		Ctate the rule for determining cigniferant figures in multiplication and division
1.6		State the rule for determining significant figures in multiplication and division.
1.6		Complete calculations with multiplication and division using the rules for significant figures
1.6		Complete calculations that involve both addition/subtraction and multiplication/division.
1.6	Distinguish between precision and accuracy.	
1.6		Define precision and accuracy.
1.6		Analyze data to label as precise, accurate, neither, or both.
1.7	Solve problems using	dimensional analysis.
1.7		Build a problem solving plan by analyzing what is given in a chemical problem and construct path to obtain an answer.
1.7		Apply dimensional analysis methods to convert between units in a one step process.
1.7		Apply dimensional analysis in a multi step conversions.
1.7		Apply dimensional analysis involving units raised to a power.

IGC	Learning Outcomes	
2.2-2.3	Explain atomic theory and how the structure of the atom was determined.	
2.2	State the law of definite proportions.	
2.3	Describe the statements of Dalton's Atomic Theory.	
2.3	Explain which statements of Dalton's theory are no longer accurate and why.	
2.2	State the law of conservation of mass.	
2.2	Perform simple problems using the law of conservation of mass.	
2.3	Explain how the cathode ray tube lead to the understanding of electrons.	
2.3	Describe the mass to charge ratio of the electron.	
2.3	Explain the measurement of the electron's charge using the Millikan's Oil Drop Experiment	
2.3	Describe Rutherford's gold foil experiment.	
2.3	Interpret the Rutherford's gold foil experiment results that lead to the conclusion that the	
	nucleus exists as a small dense core.	
2.3	Explain how the mass deficit lead to the proposal that neutrons exist.	
2.4	Describe the structure of an atom and its components.	
2.4	Define the atomic mass unit in terms of the mass of a carbon atom.	
2.4	Compare the relative mass and charge of the subatomic particles.	
2.4	Define atomic number.	
2.4	Describe the relationship between the atomic number and the number of protons.	
2.4	Determine the atomic number for an element using the periodic table.	
2.4	Compare properties of isotopes.	
2.4	Define isotope.	
2.4	Define mass number.	
2.4	Symbolize isotopes using chemical symbols, mass number, and atomic number.	
2.4	Determine the number of protons, neutrons, and electrons in an atom given the isotopic symbol.	
2.4	Construct the isotope symbol for atoms.	
2.5	Use isotopic masses and natural abundance in calculations.	
2.5	Define natural abundance.	
2.5	Locate the average atomic mass of an element on the periodic table.	
2.5	Calculate the average atomic mass of an element given abundance and isotope masses.	
2.5	Calculate the relative abundance of isotopes of an element.	
2.5	Recognize the difference among the terms "atomic number", "mass number", and "atom mass".	
20.1	Describe types of radioactive decay.	
20.1	Identify alpha, beta, and gamma particles.	
2.4	Describe characteristics of cations and anions.	
2.4	Define cation and anion.	
2.4	Determine the number of protons and electrons in an ion.	
2.4	Determine the charge of an ion given the number of protons and electrons.	
2.4	Construct the isotope symbol for ions.	
3.1	Express chemical compounds using empirical, molecular and structural formulas.	
3.1	Differentiate between atomic and molecular elements.	
2.6	Describe features of the periodic table based on its layout.	
2.1	Second reactives of the periodic table based on its layout.	
2.1	Memorize the names and symbols of elements indicated on "Concepts to Memorize" she	
2.6	Recall that periods are horizontal rows in the periodic table.	
2.6	Recall that groups are vertical columns in the periodic table.	
2.6	Use the periodic table to classify elements as main-group elements or transition element	
2.6	Locate noble gases, alkali metals, alkaline earth metals and halogens on the periodic tabl	

IGC	Learning Outcomes		
2.6		lic table to classify elements as metal, nonmetal, metalloid, transition metal,	
2.4	lanthanide or a		
3.1	Distinguish between molecular and ionic compounds.		
3.1		ic bonds generally occur between metals and nonmetal.	
3.1	_	ralent bonds general occur between nonmetals.	
3.3	Identify characteristics of monatomic and polyatomic ions.		
3.3		lic table to predict the common charge of main group elements.	
3.3		yatomic ions and charges.	
3.3	Recall the form	nula of the hydronium ion (H3O+, also shown as H+).	
3.3, 3.4	Write formulas and names for compou		
3.3	Construct cher	mical formulas for ionic compounds from the known charges of the ions.	
3.3	Construct cher	mical formulas for ionic compounds from the name of the compound.	
3.4	Name ionic co	mpounds from the chemical formula.	
3.2	Name covalen	t compounds from the chemical formula.	
3.2	Construct a ch	emical formula of covalent compounds given the name.	
3.5	Name binary a	cids and provide formula from the name.	
3.5	Distinguish bet	tween binary acids and oxyacids (also called oxoacids).	
3.7	Explain the meaning of mole and its re	lationship to mass of an atom.	
3.7	Define mole.	·	
3.7	Recall the mag	nitude of a mole is equal to Avogadro's number.	
3.7		een the moles and atoms of an element.	
3.8	Convert between	een grams and moles of an element.	
3.8	Calculate formula and molar masses and relate to moles.		
3.1		t formula units are the simplest unit for an ionic compound.	
3.8	Use atomic ma	asses of elements in a compound to calculate the formula mass (amu) and	
3.8		/mol) of the compound. een moles and mass of a compound.	
3.8		een moles and the number of molecules or formula units of a compound.	
<u> </u>	oomen seine		
3.9	Use percent by mass of a compound in		
3.9	Calculate the p	percent by mass of an element in a compound.	
3.9	I	mass as a conversion factor to calculate mass of an element in a given	
	guantity of a c		
3.9		in a chemical formula as a conversion factor between molecules or formula .	
3.10	units and atom	ns or ions. ercent by mass of a compound and determine the empirical formula.	
3.11		molecular formula if given an empirical formula and its molar mass.	
4.3, 5.5	Describe solutions qualitatively and qu		
4.3		issociated with aqueous solutions. (Solvent, solute, concentration,	
7.5	concentrated,		
5.5	Define molarit		
5.5		arity of a solution given moles or mass of solute and volume of solution.	
5.5	Use molarity ir	n calculations to find moles of solute, volume of solution, or mass of solute.	
5.5	Use the dilution formula in calculation	s.	
5.5	State the diluti	ion formula and identify all variables.	
5.5	Use dilution fo	rmula to calculate unknown values when a solution is diluted.	
5.5	Distinguish bet	tween dilute and concentrated solutions.	
4.1	Write and balance a chemical equation		
4.4	Classify an ionic compound as soluble		
4.4	-	e difference between soluble and insoluble compounds.	
	Memorize the	·	

IGC	Learning Outcomes		
4.3	Summarize characteristics of strong, weak, and non-electrolytes.		
4.3	Describe how an ionic compound dissolves in water.		
4.3	Distinguish between strong electrolyte, weak electrolytes and nonelectrolyte solutions or		
4.2	macroscopic level, that is how they behave.		
4.3	Distinguish among strong electrolyte, weak electrolyte, and nonelectrolyte solutions on to molecular level, that is, what makes them.		
4.3	Identify substances as strong, weak, or non-electrolytes.		
4.4	Describe precipitation reactions.		
4.4	Define precipitation.		
4.4	Predict the precipitate that may form when aqueous solutions of ionic compounds are mi		
4.4	Write complete ionic equations.		
4.4	Write net ionic equations.		
4.3	Identify strong acids and bases.		
4.3	List the names and formulas of the six strong acids.		
4.3	Write the reactions for the ionization of a strong acid or base in water.		
4.3	Recognize that hydroxides of Group I metals, calcium, strontium, and barium are strong		
	bases.		
4.5	Describe acid-base reactions.		
4.3	Describe Arrhenius acids and bases.		
4.5	Identify the products of reactions between acids and bases.		
4.5	Write balanced neutralization reactions.		
5.9	Define the common terms associated with a titration: titrant, equivalence point, indicato		
4.6	Explain properties of oxidation-reduction reactions.		
4.6	State rules for calculation of oxidation numbers.		
4.6	Apply the rules to calculate the oxidation number of all atoms in a compound, for free		
-	elements, and for ions.		
4.6	Recognize a redox reaction.		
4.6	Define oxidation and reduction in terms of the loss or gain of electrons.		
4.6	Identify what substance is oxidized and what substance is reduced.		
4.6	Identify the oxidizing agent and reducing agent.		
4.6	Balance redox reactions given the number of electrons in each half-reaction.		
5.1-5.5	Calculate the quantitative relationships among substances in a reaction.		
5.1	Determine mole-to-mole ratios between substances based on a balanced chemical equat		
5.2	Given the amount of one substance (in moles or mass) and a chemical equation, calculate		
J.Z	amount of another substance (in moles or mass)		
5.3	Identify limiting reagent problems.		
5.3	Determine substances that are the limiting and excess reagents.		
5.4	Calculate theoretical yield.		
5.3	Calculate the amount of remaining excess reactant.		
5.4	Distinguish between actual and theoretical yields.		
5.4	Calculate percent yield		
5.4	Use percent yield to calculate actual or theoretical yields.		
5.5	Use molarity to solve stoichiometry and limiting reagent problems.		
5.5	Recognize that the dilution formula is used for dilutions only and NOT for stoichiometry		
	problems.		
5.5	Distinguish between a dilution and a reaction.		
5.5	Calculate quantities of reactants in a titration.		
6.1-6.2	Define terms associated with the energy of a reaction.		
6.2	Distinguish between energy and work.		
6.1	Define kinetic energy, potential energy, and thermal energy.		
6.2	State the law of conservation of energy.		

IGC	Learning Outcomes	
6.2	Define heat and work.	
6.2	Define energy, system and surrounding.	
6.1	Distinguish among kinetic, thermal, potential, and chemical energies.	
6.1	Convert between energy units.	
6.3-6.4	Describe the basic principles of thermodynamics.	
6.4	Explain connections between change in internal energy and change in enthalpy.	
6.3	Define state functions.	
6.2, 6.4	Calcuate the change in internal energy.	
6.2	Define internal energy.	
6.2	Recall the sign convention of heat.	
6.2	Recall the sign convention of work.	
6.2	Explain how the sign of ΔU (internal energy) indicates the flow of energy.	
6.4	Calculate work.	
6.4	State the equation for the relationship between pressure, volume, and work and identify a variables.	
6.4	Determine PV work.	
6.5	Distinguish between specific heat and heat capacity.	
6.5	Define specific heat and heat capacity.	
6.5	State the equation relating heat, mass, specific heat, and temperature and identify all variables.	
6.5	Use the equation relating heat, mass, specific heat, and temperature in calculations.	
6.5	State the equation relating heat, heat capacity, and temperature and identify all variables.	
6.5	Use the equation relating heat, heat capacity, and temperature and define all variables.	
6.6	Use the principles of calorimetry to measure heat transfer between objects.	
6.6	Recall how thermal energy is transfered between the system and surrounding.	
6.6	Complete calculations for the transfer of heat between two substances.	
6.6	Define calorimetry.	
6.6	Recognize the components of a constant pressure calorimeter.	
6.4	Distinguish between properties of endothermic and exothermic processes.	
6.4	Define enthalpy.	
6.4	Define endothermic and exothermic.	
6.7	Sketch energy diagram for endothermic and exothermic processes.	
6.4	Explain the sign convention used for endothermic and exothermic processes.	
6.7, 6.8	Use enthalpy in calculations.	
6.7	Use thermochemical equations to convert between quantity of a substance and heat.	
6.7	Use measured values from a constant pressure calorimeter to calculate unknown values so as enthalpy change or heat capacity.	
6.7	Describe the relationships between the chemical equation and ΔH of the reaction as the reaction is modified.	
6.7	Explain the concept of Hess's Law.	
6.7	Use Hess's Laws to determine the enthalpy change of a reaction.	
6.8	Define standard state for gas, liquid, solid, or solution.	
6.8	Define enthalpy of formation.	
6.8	Express the reaction represented by a given enthalpy of formation.	
6.8	Use values of enthalpy of formation to determine the enthalpy change for a given reaction	
6.8	Determine the enthalpy of formation for a substance given the enthalpy change of a react	

IGC	Learning Outcon		
8.1		Define electromagnetic radiation.	
8.1		Distinguish among amplitude, wavelength, and frequency.	
8.1		Describe the general trends in the electromagnetic spectrum (frequency, wavelength, an	
8.1		energy). State the colors in the visible region along with energy, frequency, and wavelength trend	
8.1		Recall that light in the visible region has wavelengths from 400-750 nm.	
8.1		Classify regions of the spectrum as higher or lower in energy than visible region.	
8.1		Distinguish between constructive and destructive interference.	
8.1		Describe diffraction in waves.	
8.1	Complete calcul	ations related to electromagnetic radiation.	
8.1		Recognize that c is the speed of light.	
8.1		Calculate among values of energy, frequency, and wavelength.	
8.1		Relate energy to the number of photons.	
8.1	Describe the pho	otoelectric effect.	
8.1		Explain the concept of threshold frequency and how it affects the ejection of electrons.	
8.1		Explain how intensity and wavelength affect the electrons emitted (or not) in the photoelectric effect.	
8.1		Recognize that the photoelectric effect led to the understanding of the particle nature (photons) of light.	
8.1	Calculate energy/frequency/wavelength associated with photoelectric effect.		
8.1	Describe the em	ission of electromagnetic radiation.	
8.2		Distinguish between emission line spectra and the continuous spectrum of white light.	
8.2		Relate the Bohr model to the emisson spectrum of hydrogen.	
8.2		Relate the energy of the photon emitted or absorbed to the energy change of the electron	
8.2		Complete calculations for hydrogen atom using the Rydberg equation.	
8.1	Recognize the wave-particle duality of matter.		
8.1	_	Explain how the interference pattern from a beam of electrons supports that electrons	
		behave as waves.	
8.3		State the deBroglie formula and identify all variables.	
8.3		Use the deBroglie formula in calculations.	
8.3	Describe Heisen	berg's uncertainty principle	
8.3	Explain the inversely proportional relationship between the uncertain		
8.6	Summarize the	uncertainty of the velocity. meaning and relevance of the quantum numbers.	
8.6	Januarize tile i	Identify each of the four quantum numbers.	
8.6		Define the meaning of each of the quantum numbers.	
8.6		Give the possible values for each quantum number.	
8.6		Identify sets of allowed/disallowed quantum numbers.	
8.6		Pair angular momentum quantum numbers with the shape of orbitals.	
8.6		Describe the shape of each orbital type (s, p, d, and f).	
8.6		Describe the relationship between nodes and orbitals.	
8.6		Given select values of quantum numbers, determine the number of orbitals or electrons	
0.0		those values.	
8.4		Define degenerate.	
8.4		Rank the energy level of sublevels within a principal level (s, p, d, f)	
8.6		Define the Pauli exclusion principle.	
8.6		Explain how the Pauli exclusion principle affects the values of quantum numbers.	
8.5	Write the electro	on configuration of an element.	
8.4		Describe Hund's rule and its effect on electron arrangement.	
		Define aufbau principle.	

IGC	Learning Outcomes
8.4	Draw orbital diagrams of neutral atoms.
8.5	Write electron configuration of neutral atoms.
8.5, 9.1	Distinguish between valence and core electrons.
9.1	Determine the number of valence electrons in an atom.
8.5	Write electron configurations for transition metals (including exceptions for d4 and d9
	elements).
8.4	Define diamagnetic and paramagnetic.
8.4	Determine if an element is diamagnetic or paramagnetic.
8.5	Identify patterns in electron configurations based on arrangement in the periodic table.
8.5	Relate the electron configuration of a group of elements to their arrangement in the periodic
	table.
8.6	Write the quantum numbers for any electron in an atom based on its orbital diagram or electron configuration.
9.2	Summarize periodic trends for effective nuclear charge and atomic radius.
9.2	Describe shielding of electrons by other electrons.
	Define effective nuclear charge.
9.2	Identify the trends in effective nuclear charge.
9.2	Define atomic radius for atoms.
9.2	Identify the trends in atomic radii.
9.2	Explain the trends in atomic radii and effective nuclear charge.
9.2	Estimate the value of the effective nuclear charge of an electron.
9.2	Summarize periodic trends of ions and isoelectronic series.
9.2	Describe the size of an ion relative to its parent atom.
8.6	Define isoelectronic.
8.6	Identify isoelectronic species.
9.2	Rank isoelectronic species according to size.
9.3	Summarize perioidic trends for ionization energy.
9.3	Define ionization energy.
9.3	Write the reaction that represents the first ionization of an atom.
9.3	Describe trends in first ionization energies.
9.3	Describe trends in second and successive ionization energies.
9.3	Identify element based on sequence of ionization energies.
9.3	Summarize periodic trends for electron affinity.
9.3	Define electron affinity.
9.3	Write the reaction that represents the process associated with the first electron affinity.
9.3	Describe "trends" in electron affinity values.
2.3	Summarize periodic trends for metallic character.
2.6	Define metallic character.
2.6	Describe trends in metallic character.
9.4	Describe formation of ionic compounds.
8.6	Write the electron configuration of cations and anions.
9.4, 10.1, 12.6	Distinguish among ionic, covalent, and metallic bonding.
10.3, 10.5	Use electronegativity to describe properties of covalent bonds.
10.3	Explain electronegativity of an element.
10.3	Describe the trends for electronegativity of elements.
10.5	Relate electronegativity to bond polarity.
10.5	Categorize bonds as ionic, polar, or nonpolar.
10.2-10.4	Draw Lewis structures of compounds.
10.1	Draw Lewis symbols of atoms.
	Draw the Lewis structure of a binary ionic compound.
10.2	Draw the Lewis structure of a smary forme compound.
10.2	Describe how electrons form single, double, or triple bonds.

IGC	Learning Outcomes		
10.4	Name the t	hree types of exceptions to the octet rule.	
10.4	Draw Lewis	structures of compounds that violate the octet rule.	
10.3	Define reso	nance.	
10.3	Identify wh	en resonance is possible in a molecule or ion.	
10.3	Define reso	nance hybrid.	
10.3	Calculate fo	ormal charge of atoms in a molecule or ion.	
10.3	Explain the	significance of formal charge values.	
10.3	Apply a form	mal charge explanation to determine the best Lewis structure for a compound.	
10.6	Characterize the strength of covaler	nt bonds.	
10.6	Define bond	d energy.	
10.6	Discuss bon	d strength as a function of bond length.	
10.6	Describe ho	w the bond length changes from single to double to triple bond between atoms	
10.6	Calculate th	ne unknown given bond energy values and/or the enthalpy of a reaction.	
9.5	Characterize the strength of ionic be	Calculate the unknown given bond energy values and/or the enthalpy of a reaction. Characterize the strength of ionic bonds.	
9.5	Define lattic	ce energy.	
9.5	Describe th	ne lattice energy trends related to ion size and charge.	
9.5	Describe th	e steps of the Born-Haber cycle.	
9.5	Write the e	quation for the energies associated with the Born-Haber cycle.	
9.5	Calculate la	ttice energy using the Born-Haber cycle.	
11.1	Describe the three-dimensional sha	pe of a molecule.	
11.1		lence shell electron pair repulsion (VSEPR) theory.	
11.1	Recognize t	he electron group geometry of molecules.	
11.1		the electron group geometry based on the Lewis structure.	
11.1		the effect of lone pairs on the geometry of a molecule.	
11.1		ossible electron group and molecular geometries.	
11.1	· ·	electron group geometry and molecular geometry based on the number of	
		d non-bonding groups in the Lewis structure of a molecule or ion.	
11.1	Determine :	the geometries for molecules with more than one central atom.	
11.2	Determine the polarity of a molecu	le.	
11.2	Define dipo	le moment.	
11.2	Recognize t	hat polarity affects solubility of molecular compounds (like dissolves like).	
11.3	Describe valence bond theory in ter	ms of orbital overlap to form bonds.	
11.3	Describe hybridization of atomic or	bitals.	
11.3	Pair hybridi	zation schemes with the appropriate electron group geometry.	
11.3	Compare th	ne energy of the hybrid orbitals to the atomic orbitals from which they were	
	formed.		
11.3		erlap of atomic and hybrid orbitals to explain the bonding in a molecule.	
11.3	_	a and pi bonding according to the location of the electron density with respect t	
11.3		of the atoms in the bond. es of orbitals which form a sigma bond.	
11.3		es of orbitals which form a pi bond.	
11.3		·	
		alent bonds in a molecule or polyatomic ion as sigma or pi.	
11.5		or homonuclear diatomic elements or ions.	
11.5		between bonding and antibonding orbitals.	
11.5		IO diagram for homonuclear diatomics.	
11.5		ne bond order based on the MO diagram.	
11.5		oond order to the stability of the bond.	
11.5		if a diatomic molecule is diamagnetic or paramagnetic based on the MO diagran	
11.5	Relate the o	concept of delocalized molecular orbitals to the concept of resonance.	

IGC	Learning Outcomes	
11.5	Describe the linear combination of atomic orbitals that form bonding and anti-bonding molecular orbitals.	g
11.5	Describe how destructive and constructive interference affects molecular orbitals.	
11.5	Label the components of the molecular orbital diagram of H ₂ .	
7.1	Identify and use units of pressure.	
7.1	Memorize the common pressure units and the conversion factors between pressure units	
7.1	Convert between pressure units.	
	Describe the simple gas laws qualitatively and quantitatively.	
7.2	Calculate values of pressure or volume using Boyle's Law.	
7.3	Calculate values of volume or temperature using Charles' Law.	
7.5	Calculate values of moles or volume using Avogadro's Law.	
7.6	Use the ideal gas law equation to derive the simple gas laws.	
	Use the ideal gas law in calculations.	
7.6	Calculate values of P, V, n or T if given the other three using the ideal gas law.	
7.4	Complete calculations with the combined gas law	
7.1	Define standard temperature and pressure (STP).	
7.8	Combine density calculations and molar mass calculations with the ideal gas law to	
7.0	determine the density or molar mass of a gas.	
	Define and derive molar volume.	
7.1	Use molar volume at STP as a conversion factor.	
7.9	Use Avogadro's Law to do stoichiometry conversions in reactions involving gases.	
7.7	Use Dalton's Law of partial pressure to calculate total pressure of a gas if given individual gas pressures and vice versa.	
7.7	State Dalton's law of partial pressure and define all variables.	
7.7	Define mole fraction	
7.7	Calculate the mole fraction of a substance in a mixture.	
7.7	Calculate partial pressure in terms of mole fraction and total pressure.	
7.11	Calculate partial pressure in terms of mole fraction and total pressure. Describe the processes of diffusion and effusion of gases.	
7.11	Define diffusion and effusion.	
7.11	Compare relative speeds of molecules and rates of effusion as a function of molar mas	SS.
7.10	Use the kinetic molecular theory of a gas to explain the simple gas laws on the molecular level.	
7.10	Retell the statements of the Kinetic Molecular Theory of a Gas.	
7.10	Recognize the equation for kinetic energy (1/2 mv ²) and identify all variables.	
7.11	Describe the qualitative relationship between variables in the rms velocity equation.	
7.11	Describe the qualitative relationship between molar mass and average kinetic energy	of
7.11	gases. Describe the qualitative relationship between temperature and average kinetic energy	of
7.11	gases. Desribe the relationship between rate of effusion and molar mass as explained by Gra	har
	law.	
7.12	Distinguish between real and ideal gases.	
7.12	Describe the conditions of pressure and temperature that distinguish a real gas from a gas.	n i
	Explain qualitatively how the terms of the van der Waals equation account for the pro	